2 980 nm Photonic Microcavity Vertical Cavity Surface Emitting Laser
نویسنده
چکیده
Vertical-Cavity Surface-Emitting Laser (VCSEL) is a type of semiconductor laser with laser beam perpendicular to the surface of the semiconductor substrate, as shown in Fig.1(a) [1]. VCSEL has many advantages, such as non-divergence output beam, fabrication and test on wafer, easy two-dimensional integration, and single longitudinal mode work. VCSEL is composed of an active region sandwiched between top and bottom highly reflective DBR mirror [2,3]. Generally high power VCSEL could be realized through large emission window, but suffers multi-mode operation due to the inhomogeneous current distribution across the active region. On the other hand single-mode operation is required in many applications including optical communications. Single-mode can transport longer distance and meet the requirements of high-speed data transmission [4,5]. Several approaches such as confined aperture less than 3m, proton implantation, oxide and proton implantation mixed structure have been reported to achieve single-mode VCSEL. Due to the small aperture of emission window, these VCSELs are lasing at low output power. Besides the requirements of high output power and single mode operation, the wavelength range of VCSEL is broadened by applying InAs quantum dots or InGaAsN quantum well of the wavelength range of 1300nm and nitride quantum well of the blue light range for the applications of fiber communication and display.
منابع مشابه
High-power single-mode vertical-cavity surface-emitting lasers
Articles you may be interested in Optimal photonic-crystal parameters assuring single-mode operation of 1300 nm AlInGaAs vertical-cavity surface-emitting laser Single-mode 1.27 μ m InGaAs vertical cavity surface-emitting lasers with temperature-tolerant modulation characteristics Appl. High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure Appl. Theory of...
متن کاملEffect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)
Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...
متن کاملFemtosecond synchronously mode-locked vertical-external cavity surface-emitting laser.
The behavior of a room temperature synchronously mode-locked vertical-external cavity surface-emitting laser (VECSEL) operating at 980 nm is reported. The laser performance was found to be qualitatively the same for different pump pulse duration (3.6 ps and 70 fs). The pulse duration of the laser is limited by strong self-phase modulation to around 10-40 ps. By compressing the strongly chirped ...
متن کاملQuantum cascade surface-emitting photonic crystal laser.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current ...
متن کاملCoupled-defect photonic crystal vertical cavity surface emitting lasers - Electronics Letters
Photonic crystal patterns containing two defects were fabricated within a large gain area in vertical cavity surface emitting lasers. By designing effective refractive index changes in the region between the defects through cavity shifts caused by photonic crystals, it was possible to coherently couple laser light output from the defects. This enables a novel way to fabricate coherently coupled...
متن کامل